US009304742B2

a2 United States Patent 10) Patent No.: US 9,304,742 B2
Cai et al. (45) Date of Patent: Apr. 5, 2016
(54) MODIFYING A MIDDLEWARE 16153 R 717/110

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) JunJie Cai, Durham, NC (US); San

Hong Li, Shanghai (CN); Jing Lv,

Shanghai (CN); Wei Wei Gao, Shanghai

(CN); Chen Lei, Shanghai (CN)

Inventors:

International Business Machines
Corporation, Armonk, NY (US)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

1) 14/472,556

(22)

Appl. No.:

Filed: Aug. 29,2014

(65) Prior Publication Data

US 2014/0372977 Al Dec. 18, 2014

Related U.S. Application Data

Continuation of application No. 14/073,569, filed on
Nov. 6, 2013.

(63)

(30) Foreign Application Priority Data

Nov. 30,2012 (CN) 2012 1 0505784

(51) Int.ClL
GOGF 9/44
GOGF 9/445
U.S. CL
CPC ... GO6F 8/30(2013.01); GO6F 8/67 (2013.01)
Field of Classification Search

CPC GOG6F 8/30; GOG6F 8/67

(2006.01)
(2006.01)
(52)

(58)

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,627,866 B2 12/2009 Bunker
8,250,559 B2 8/2012 Daynes
8,261,297 B2 9/2012 Kabanov
2008/0120129 Al* 5/2008 Seubertetal. 705/1
(Continued)
OTHER PUBLICATIONS

Previtali, Dynamic Updates: Another Middleware Service?, 2007,
ACM, pp. 49-54.*

(Continued)

Primary Examiner — John Chavis
(74) Attorney, Agent, or Firm — Eustace P. Isidore; Yudell
Isidore PLLC

(57) ABSTRACT

A method for modifying a middleware shared by multiple
tenants by preparing a data packet comprising modification
information and tenant information, the modification infor-
mation comprising information of a specific class to be modi-
fied in the middleware as well as modification content for the
specific class, the tenant information indicating a specific
tenant of the plurality of tenants to which the modification
content is directed; and in response to acquisition of the data
packet: modifying the specific class in the middleware in
runtime according to the modification information to create a
modified specific class; and applying the modified content
only to the specific tenant. When multiple tenants share a
same middleware, different versions of the middleware may
be provided for respective tenants, without affecting the use
by other tenants, thereby satisfying sharing and customiza-
tion requirements of each of the multiple tenants.

12 Claims, 7 Drawing Sheets

START
400

EXTRACT MODIFICATION INFORMATION AND TENANT
INFORMATION FROM THE DATA PACKET

201

l

LOCATE THE SPECIFIC CLASS TO BE MODIFIED

0

|

MODIFY THE LOCATED SPECIFIC CLASS ACCORDING TO
THE MODIFICATION CONTENT

0

!

ADD AN EXECUTION CONDITION FOR THE MODIFICATION
CONTENT THAT IS ASSOCIATED WITH A SPECIFIC TENANT
IN THE SPECIFIC CLASS

1)

END
40

US 9,304,742 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0199259 Al
2012/0173581 Al

8/2010 Quinn
7/2012 Hartig

OTHER PUBLICATIONS

Roman et al., Dynamically Programmable and Reconfigurable
Middleware Services, 2004, LNCS, pp. 372-396.*

Finalization Denial of Service Prevention for Multitenant Cloud
Java, IP.com Prior Art Database Disclosure, IP.com Disclosure No.
IPCOMO000215983D, Publication Date Mar. 15, 2012.

Storing Profiling Information for Use in Future Virtual Machine
Invokations for Optimization Decisions, IP.com Prior Art Database
Disclosure, IP.com Disclosure No. IPCOMO000216308D, Publication
Date Mar. 29, 2012.

U.S. Appl. No. 14/073,569 entitled “Moditying a Middleware”; Non-
final office action dated Feb. 13, 2015 (13 pg).

* cited by examiner

US 9,304,742 B2

Sheet 1 of 7

Apr. 5, 2016

U.S. Patent

-

Fig. |

U.S. Patent Apr. 5, 2016 Sheet 2 of 7 US 9,304,742 B2

SERVER SYSTEM 12
MEMORY 28
PROCESSING UNIT
16
: RAM STORAGE
30 > SYSTEM
34
CACHE PROGRAM/UTILITY
3
4
Q
yi v v N
{ BUS 18)
\ A A //
y \ 4
110 INTERFACE(S) | NETWORK ADAPTER
2 20
y y
EXTERNAL DEVICE() DISPLAY
14 U

Fig. 2

U.S. Patent

Apr. 5, 2016 Sheet 3 of 7

)
l

US 9,304,742 B2

PREPARE A DATA PACKET COMPRISING MODIFICATION
INFORMATION AND TENANT INFORMATION
302

l

MODIFY THE SPECIFIC CLASS IN RUNTIME ACCORDING TO THE
MODIFICATION INFORMATION AND APPLYING THE MODIFICATION
CONTENT ONLY TO THE SPECIFIC TENANT
304

i
C)

Fig. 3

U.S. Patent

Apr. 5, 2016 Sheet 4 of 7

START
400

OBTAIN A CUSTOMIZATION REQUEST OF A TENANT
401

|

PREPARE MODIFICATION INFORMATION AND TENANT
INFORMATION ACCORDING TO THE CUSTOMIZATION
REQUEST
402

l

PACKAGE THE MODIFICATION INFORMATION AND
TENANT INFORMATION INTO DATA PACKET ACCORDING
TO A PREDETERMINED FORMAT
403

i
Ca

Fig. 4

US 9,304,742 B2

U.S. Patent Apr. 5, 2016 Sheet 5 of 7 US 9,304,742 B2

(e
'

EXTRACT MODIFICATION INFORMATION AND TENANT
INFORMATION FROM THE DATA PACKET
501
LOCATE THE SPECIFIC CLASS TO BE MODIFIED
502
MODIFY THE LOCATED SPECIFIC CLASS ACCORDING TO
THE MODIFICATION CONTENT
503
ADD AN EXECUTION CONDITION FOR THE MODIFICATION
CONTENT THAT IS ASSOCIATED WITH A SPECIFIC TENANT

IN THE SPECIFIC CLASS
504

|
Ca D

fig. 5

U.S. Patent

Apr. 5, 2016 Sheet 6 of 7

US 9,304,742 B2

public Class Foo {
public static memberMethodA { //do something }

public memberMethodB { //do something }

MODIFY

pub“(‘_ (lass Foo { publlc (lass Foo$VI {
public Foo{ ublic static memberMethodA {//do something VI }
| ublic memberMethodB { //do something_V2}
map.put(“tenant|”, Foo$VI);
map.put(“tenant2”, Foo$V2);
} / ,
public static memberMethodA T e
enant]) o ant])
Foo$V|.memberMethodA();
} else if{tenant2){
forbdmenbegtethodly public Class Foa$V2 {
} T~ = ppublic static memberMethodA {//do something V2}
) A)ublic memberMethodB { //do something_V2}
public memberMethodB { //Instancesmethod s
if{tenant!){) f
map.get(“tenant | ”).memberMethodB(); 4 P ’
} else if{tenant2){ s T
map.get(“tenant2”) memberMethodB(); © ‘orte"amz/
1
}
1

fi

6

U.S. Patent Apr. 5, 2016 Sheet 7 of 7 US 9,304,742 B2

APPARATUS
100

PREPARATION UNIT
102

MODIFICATION UNIT
104

Fig. 7

US 9,304,742 B2

1
MODIFYING A MIDDLEWARE

PRIORITY CLAIM

The present application is a continuation of U.S. patent
application Ser. No. 14/073,569, titled “Modifying a Middle-
ware,” filed on Nov. 6, 2013, which also claims benefit of
priority under 35 USC §120 and §365 to the previously filed
China Patent Application No. 201210505784.4, titled,
“Modifying a Middleware” with a priority date of Nov. 30,
2012. The contents of each application is incorporated by
reference herein.

BACKGROUND

1. Technical Field

The present disclosure relates to a shared middleware in an
application server environment. More specifically, the
present disclosure relates to a method and apparatus for modi-
fying a middleware shared between multiple tenants.

2. Description of the Related Art

In order to provide isolation in an application server envi-
ronment among tenants in a multi-tenant shared system, one
system provided in the art is defining multiple partitions in a
database, each of which is independently associated with a
single tenant. A content portion shared by all the tenants in the
system is stored in the database, and the tenant specific con-
tent portion corresponding to each tenant is stored in its own
partition. This solution does not allow dynamic modification
of the middleware in the runtime process. Furthermore, pro-
viding a customized runtime environment to individual ten-
ants is cumbersome due to space requirements necessitated
by using an individual partition for each tenant.

BRIEF SUMMARY

Disclosed is a method and apparatus for providing different
versions of a shared middleware to a plurality of tenants by
customizing and modifying the running middleware. While
multiple tenants share the same middleware, different ver-
sions of the middleware may be provided for each difterent
tenant, without affecting the use of other tenants, to meet the
individual customization and sharing requirements for each
tenant. According to one aspect of the present disclosure,
there is provided a method for modifying a middleware
shared by multiple tenants, comprising: preparing a data
packet comprising modification information and tenant infor-
mation, the modification information comprising information
of'a specific class to be modified in the middleware as well as
modification content for the specific class, the tenant infor-
mation indicating a specific tenant of the plurality of tenants
to which the modification content is directed; and in response
to acquisition of the data packet: modifying the specific class
in the middleware in runtime according to the modification
information to create a modified specific class; and applying
the modified content only to the specific tenant.

According to another aspect of the present disclosure, there
is provided an apparatus for modifying a middleware shared
by multiple tenants, the apparatus comprising: a processing
unit, a memory, and program code that when executed by the
processing unit enables the apparatus to: prepare a data packet
comprising modification information and tenant information,
the modification information comprising information of a
specific class to be modified in the middleware as well as
modification content for the specific class, the tenant infor-
mation indicating a specific tenant of the plurality of tenants
to which the modification content is directed; and in response

10

15

20

25

30

35

40

45

50

55

60

65

2

to acquisition of the data packet: modify the specific class in
the middleware in runtime according to the modification
information to create a modified specific class; and apply the
modified content only to the specific tenant.

The above as well as additional objectives, features, and
advantages of the present innovation will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure can be better understood by refer-
ring to the following description when read in conjunction
with the accompanying drawings, in which same or similar
reference numerals are used to denote same or similar com-
ponents. The drawings, together with the following detailed
description, are included in the specification and form part
thereof, and used to further illustrate, by way of example,
embodiments of the present disclosure and explain principles
and advantages of the present disclosure.

FIG. 1 is a block diagram of a schematic diagram of a
shared middleware according to an embodiment of the
present disclosure;

FIG. 2 is a block diagram of an exemplary server system
according to an embodiment of the present disclosure;

FIG. 3 is a flow diagram of a method for modifying a
middleware according to an embodiment of the present dis-
closure;

FIG. 4 is a flow diagram of a method of sub-steps for
preparing a data packet according to an embodiment of the
present disclosure;

FIG. 5 is a flow diagram of a method of sub-steps for
modifying a class according to an embodiment of the present
disclosure;

FIG. 6 is an illustration of an exemplary code to modify a
class according to an embodiment of the present disclosure;
and

FIG. 7 is a block diagram of an apparatus according to an
embodiment of the present disclosure.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

Described herein is an apparatus, method, and computer
program product for providing different versions of a shared
middleware to a plurality of tenants. Although an illustrative
implementation of one or more embodiments is provided
below, the disclosed systems and/or methods may be imple-
mented using any number of techniques. This disclosure
should in no way be limited to the illustrative implementa-
tions, drawings, and techniques illustrated below, including
the exemplary designs and implementations illustrated and
described herein, but may be modified within the scope of the
appended claims along with their full scope of equivalents.

It will be appreciated that for simplicity and clarity of
illustration, elements shown in the figures have not necessar-
ily been drawn to scale. For example, the dimensions of some
of'the elements may be exaggerated relative to other elements
for clarity. Further, where considered appropriate, reference
numbers may be repeated among the figures to indicate cor-
responding or analogous features.

In the following detailed description, numerous specific
details are set forth in order to provide a thorough understand-
ing of the present disclosure. However, it will be understood
by those skilled in the art that the present disclosure may be
practiced without these specific details. In other instances,

US 9,304,742 B2

3

well-known methods, procedures, and components have not
been described in detail so as not to obscure the present
disclosure.

FIG. 1 illustrates a schematic diagram of a shared middle-
ware according to an embodiment of the present disclosure.
In the schematic diagram of FIG. 1, WebSphere Application
Server (WAS) is a middleware run in a Java Runtime Envi-
ronment (JRE). Multiple tenants, A, B, C, and D, all share and
run their respective user applications via the WAS middle-
ware. Each tenant may have its own customization require-
ments for the middleware. For example, tenant A might want
to modify a certain functional part of the middleware to form
a version V, to meet its specific application requirements,
tenant B may want to update and upgrade the functional part
to form a version V ;z to improve operating performance, while
tenants C and D simply might want to maintain the original
default version V, of the middleware.

Referring now to FIG. 2, there is illustrated a block dia-
gram of an exemplary server system 12 for implementing the
various embodiments of the present disclosure. Server system
12 is shown in the form of a general-purpose computing
device. The components of server system 12 may include, but
are not limited to, a processing unit 16 (which may comprise
one or more processors or processing units), a system
memory 28, and a bus 18 that couples various system com-
ponents including system memory 28 to processing unit 16.

Bus 18 represents one or more of any of several types of bus
structures, including, for example, a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus archi-
tectures. By way of example, and not limitation, such archi-
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Server system 12 may also include a variety of computer-
readable system media. Such media may be any available
media that is accessible by server system 12, including both
volatile and non-volatile media, removable media, and non-
removable media.

System memory 28 comprises volatile memory, including
random access memory (RAM) 30 and/or cache memory 32.
Server system 12 may further include other types of remov-
able/non-removable and volatile/non-volatile storage media.
Storage system 34 includes a non-removable, non-volatile
magnetic media (not shown) such as a “hard drive”). A mag-
netic disk drive for reading from and writing to a removable,
non-volatile magnetic disk (e.g., a “floppy disk™), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media may also be included in storage system 34
and can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
system memory 28 includes at least one program product
having at least one set of program modules configured to
carry out the functions of embodiments of the disclosure.

Program/utility 40, having at least one set of program mod-
ules 42, can be stored in memory 28 by way of, for example,
an operating system, one or more application programs, other
program modules, and program data. Each of the operating
system, one or more application programs, other program
modules, and program data or any some combination thereof,
may further include an implementation of a networking envi-
ronment. Program modules 42 may include functions and/or
methodologies for carrying out embodiments of the present
disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

4

Server system 12 may also communicate via Input/Output
(I/0) interfaces 22 with display 24 and one or more external
devices 14 that enable a user to interact with server system 12.
External devices 14 may include a keyboard, a pointing
device, and/or any devices that enable server system 12 to
communicate with one or more other computing devices
(e.g., anetwork interface card or amodem). Server system 12
can also communicate with one or more networks such as a
local area network (LLAN), a general wide area network
(WAN), and/or a public network (e.g., an Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components of server system 12 via bus
18. It should be appreciated that although not shown, other
hardware and/or software components could be used in con-
junction with server system 12. Examples, include, but are
not limited to: microcode, device drivers, redundant process-
ing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems.

Referring now to FIG. 3, which shows a flowchart of a
method for modifying a middleware according to an embodi-
ment of the present disclosure. At step 302 a data packet
comprising modification information and tenant information
is prepared. The modification information includes informa-
tion of a specific class to be modified in the middleware as
well as modification content for the specific class and further
indicates what modification to be made to the class in the
middleware. The data packet is prepared to indicate how to
modify a class in a middleware. The tenant information indi-
cates a specific tenant to which the modification content is
directed. In one embodiment, the tenant information com-
prises identification information of the tenant, such as tenant
ID. In some cases, the tenant information also comprises
information associated with the tenant for assisting in posi-
tioning the specific tenant, such as IP address of the tenant.

At step 304, in response to acquisition of the data packet,
the specific class in the running middleware is modified
according to the modification information. The modification
content is then made to be only applied to the specific tenant.
The execution of the above steps is described below in com-
bination with specific examples.

In one embodiment, the modification information com-
prises information of a specific class to be modified. For
example, the information of the specific class may comprise
identification information of the specific class, such as the
name or identifier of the class. In some cases, the operation of
the middleware may contain classes with the same name but
that are loaded by different loaders. Thus, in one embodiment,
the information of the specific class further comprises meta-
data associated with the specific class for assisting in posi-
tioning the specific class. This metadata may comprise a
source of the specific class to be modified, information of a
corresponding loader, and version information of the class.
Additionally, the modification information further comprises
modification content of the specific class that indicates what
modification to be made to the specific class. In one embodi-
ment, the modification content also comprises the modified
content of the specific class, for example, the content of the
updated version of the specific class. In another embodiment,
the modification content comprises the modification which
should be made to the specific class, that is, content of differ-
ence between before and after the modification is applied.

In one example, tenant A wants to modify a specific class
“Class Example”, which defines two member methods,
methodl and method2, in its original version. Specifically,
tenant A would like to modity the execution of method1, that
is, to modify method1 as methodl', and to add a new member
method3. As described above, a packet is prepared in which

US 9,304,742 B2

5

the modification information comprises identification infor-
mation and additional metadata of the class “Class Example”,
modification content for the class, and tenant information,
which further comprises identification information of tenant
A. The modification content may also further include content
of updated version of the class, such as method1' method2,
method3. The modification content may also comprise con-
tent of a difference before and after the modification, for
example, methodl' and the newly added method3.

In order to enable multiple tenants to share a same middle-
ware while customizing it, different versions of the shared
middleware are provided for multiple tenants. It may be
appreciated that for a middleware implemented by an object-
oriented program, various functional parts in the middleware
may correspond to various classes in the program. Therefore,
the customization of the functional parts in the middleware is
actually equivalent to the modification of classes related to
the functional parts in the middleware. On the other hand, for
a shared middleware, various classes therein are also shared
and used by multiple tenants. Therefore, in order to provide
different versions of the middleware for different tenants, the
embodiments of the present disclosure modify a shared class
in runtime based on customization requirements of a specific
tenant, without affecting the use of the class by other tenants.

At FIG. 4 there is depicted a flow diagram of a method of
sub-steps for preparing a data packet according to an embodi-
ment of the present disclosure. At step 401, a customization
request of a tenant is obtained. Next, the modification infor-
mation and tenant information are prepared according to the
customization request (step 402). At step 403, the modifica-
tion information and tenant information are packaged into a
data packet according to a predetermined format. The prede-
termined format may be any pre-defined format which can be
recognized by the runtime environment.

In one embodiment, the customization request has already
indicated the specific class to be modified. In this embodi-
ment, in step 402, it only needs to extract modification infor-
mation from the customization request and acquire informa-
tion of the tenant who issued the customization request.

In another embodiment, the customization request speci-
fies only a functional part to be modified in the middleware. In
such a case, at step 402, it is necessary to acquire a class
corresponding to the functional part, and convert the modifi-
cation on the functional part into the modification on the
class, thereby preparing the modification information. Then,
after the modification information and tenant information are
prepared (step 403), the modification information and tenant
information are organized into a predetermined format,
thereby forming the desired data packet.

In one embodiment, the step of preparing a data packet
further comprises notifying the data packet to the runtime
environment running the middleware. The data packet is sub-
mitted to the runtime environment through a predetermined
interface, so that the runtime environment acquires the data
packet. In another embodiment, the data packet is stored in a
predetermined position, so that the runtime environment may
read it from the predetermined position, according to a prior
agreement, to obtain the data packet. Depending on the set-
ting of the runtime environment, the prepared data packet
may also be reported to the runtime environment through
other manners.

In response to the acquisition of the data packet, the spe-
cific class specified in the data packet is modified in runtime
(as provided by step 304 of FIG. 3). In one embodiment, the
middleware to be modified runs in a Java Runtime Environ-
ment (JRE). A parameter Java Agent of a Java Virtual
Machine (JVM) may be used to make the modification of the

40

45

6

class. Specifically, the Java Agent can re-define and modify
the class loaded in runtime without modifying the original
Java program code, thereby implementing a hot replacement
or hot start. In the context of the Java Agent, a class file may
be changed by adding self-defined ClassFileTransformer
through Instrumentation inst in the parameter. The ClassFi-
leTransformer is an interface of a class transformer provided
by JRE for implementing the transformation of a class file.
Thus, the class transformer may be invoked by the Java Agent
and be used to implement the modification to the class file.
Where the class transformer is invoked through the above
interface, the transformation of the class occurs before the
JVM defines the class. Therefore, the above interface is appli-
cable where the class to be transformed has not been loaded.
For aloaded class, the JRE further provides another interface
Retransform. By calling the class transformer through this
interface, a loaded class may be modified. Using this function
of'the class transformer, the specific class may be modified in
runtime.

In one embodiment, it is first determined whether the spe-
cific class has already been loaded. If the specific class is not
loaded, the process waits until runtime starts and then per-
forms a load of the specific class. In the process of loading the
specific class, the classloader may directly modify the spe-
cific class. If the specific class has been loaded, then the class
transformer is connected through the interface Retransform
to modify the specific class.

The above implementation of the modification of class is
described in conjunction with a Java Running Environment.
However, the embodiments of the present disclosure are not
limited to Java language. Other similar running environment
executed by a virtual machine based on class byte code, such
as a C# running environment, also provides interfaces similar
to the above class transformer. By calling an appropriate
interface, a class loaded in runtime may be modified.

With reference now to FIG. 5 there is depicted a flow
diagram of a method of sub-steps for modifying a class, (the
sub-steps of step 304 of FIG. 3) according to an embodiment
of'the present disclosure. At step 501, in response to acquisi-
tion of the data packet, modification information and tenant
information are extracted from the data packet. As mentioned
previously, the data packet is packed according to a predeter-
mined format which can be recognized by the runtime envi-
ronment. Thus, the runtime environment can easily perform
data extraction and analysis with respect to the data packet in
order to obtain the modification information and the tenant
information. At step 502, based on the extracted data, the
specific class to be modified is located from identification
information of the specific class and metadata associated with
the specific class stored in the modification information. In
response to identification of the specific class, the runtime
may accurately determine the specific class to be modified.
Next, at step 503, the located specific class is modified
according to the modification content. Then, an execution
condition associated with a specific tenant is added in the
specific class for the modification content (step 504). Both of
steps 503 and 504 may be executed by the above class trans-
former.

As described above, in one embodiment, the modification
content comprises modifications to the specific class. That is,
the content of difference between before and after the modi-
fication. The modification may be directly performed accord-
ing to the content of difference. In one embodiment, the
modification content comprises content of an updated version
of'the specific class. In this embodiment, in step 503, content
of original version of the specific class is firstly compared to
the content of updated version, thereby determining the con-

US 9,304,742 B2

7

tent of difference. The modification is then performed accord-
ing to the content of difference. Specifically, for a redefined
field and/or method included in the content of difference, the
field and/or method is added into a class body of the specific
class. Some program languages allow the addition of new
variables or methods, for example, in the previous example,
tenant A adds a completely new method3 when moditying
Class Example. In case of such support by the program lan-
guage, the newly added variable or method in the modifica-
tion content may be added to the designated specific class.
For the above added variable/method, at step 504 execution
condition corresponding to a specific tenant is added, so that
the added variable/method only applies to the specific tenant.
For example, a condition statement or a judgment statement is
added before the added variable/method, so that the added
variable/method is executed only for the specific tenant. Most
programming languages do not allow deleting original ele-
ments (variables/methods) in the specific class. If the modi-
fication content designated by a tenant indicates that a certain
variable/method is not needed, the execution of the variable/
method may be skipped by adding an execution condition.
Thus, by modifying a specific class and adding an execution
condition corresponding to the specific tenant, the modified
specific class becomes a “proxy” class. When the specific
tenant accesses that specific class, the tenant first accesses the
“proxy” class and then is guided, via the execution condition
in the proxy class, to the version corresponding to the specific
tenant, or a called “back-end” class. Thus, the specific tenant
may obtain a version of customized class, without affecting
other tenants. In the event multiple tenants each propose
individual customization requests, the process steps of FIG. 3
may be executed with respect to each request of each tenant,
so that each tenant obtains a version of its customized class.
At FIG. 6 there is depicted an illustration of an exemplary
code to modify a class according to an embodiment of the
present disclosure. As illustrated, FIG. 6 shows a segment of
exemplary code, wherein upper diagram shows the original
version of Class Foo. In the original version, Class Foo
defines member method A, method B, as well as other vari-
ables and methods therein. Assuming that tenant 1 indicates
through its corresponding data packet a wish to modify
methodA and methodB, the modified content is called v1
version. Thus, definitions for method A and method B are
modified in Class Foo, in which the methods of the v1 version
re-defined by tenant 1, namely Foo$V1.memberMethodA()
and (“tenant1”).memberMethodB(), are added and an execu-
tion condition guided by if is also added before the new
version.
After the judgment, if the current tenant is tenant 1, method
A and method B of the modified v1 version are executed;
otherwise the original version is still executed. Similarly,
tenant 2 wishes to amend method A and method B as v2
version. In this case, the methods of v2 version re-defined by
tenant 2, namely, Foo$V2.memberMethodA() and (“ten-
ant2””).memberMethodB(), are added into the definitions for
method A and method B, respectively, and likewise an execu-
tion condition guided by if is added before the new version.
Thus, only in the case where the current tenant is tenant 2,
method A and method B of modified v2 version are executed.
It should be noted that in the example of FIG. 6, method A
is a static member method decorated by static, and method B
is an instance member method. As is known in the art, static
members belong to the entire class, and therefore static mem-
bers can be accessed by visiting the class. However, for
instance members, they must be accessed through objects.
Therefore, the code of FIG. 6 is different for access process-
ing of method A and method B. As to static member, method

35

40

45

8

A, the newly defined version Foo$V1.memberMethodA() is
directly obtained. As to instance member, method B, the
instance is firstly stored as map (map.put(“tenantl”,
Foo$V1)) with the tenant ID as a keyword, and then a query
is made in the map using tenant ID so as to obtain the instance
(map.get(“tenantl”).memberMethodB()). Through the
above modification to original Class Foo, the modified Class
Foo functions as a “proxy” class. When a tenant accesses
Class Foo, he first accesses the “proxyt” class, and is guided
via the execution condition therein to a corresponding ver-
sion. Specifically, through modified Class Foo as a “proxy”,
tenant 1 is guided to the class of v1 version (illustrated by
solid arrows), tenant 2 is guided to the class of v2 version
(illustrated by dashed arrows), and other tenants still execute
the original version of Class Foo. Thus, while a class is shared
by multiple tenants, a customized version may be provided
for a specific tenant(s).

Those skilled in the art may appreciate that the above
method A may be a static member method of any content,
method B may be an instance member method of any content.
In addition, while FIG. 6 provides modifying a class within
Java, the modification manner can also be implemented in
other forms and in other programming languages.

In one embodiment, when the class is modified according
to the above execution manner, the method further comprises
running the modified specific class. Since a modified specific
class may point to a specific version corresponding to a spe-
cific tenant, each tenant will obtain a class of customized
version, thereby obtaining a function part corresponding to
the class. Thus, while multiple tenants share a same middle-
ware, each tenant may also obtain customized function parts,
achieving customization and modification of the middleware.

In one embodiment, the modified specific class may be
stored. Specifically, a modified version of the shared specific
class may be directly recorded and stored or the original
version of the specific class and various versions correspond-
ing to different tenants may be recorded. In one embodiment,
the modified specific class is stored in a designated location of
a nonvolatile medium. Thus, in the event the middleware
needs to restart for some reason, the modified specific class
may be read directly from the designated location, without
having to prepare a data packet and modify the specific class
again.

At FIG. 7 there is depicted a block diagram of an apparatus
according to an embodiment of the present disclosure. As
shown in FIG. 7, apparatus 700 for modifying the middleware
comprises: a preparation unit 702 and a modification unit 704.
Preparation unit 702 is configured to prepare a data packets
comprising modification information and tenant information,
the modification information including information of a spe-
cific class to be modified and modification content for the
specific class, the tenant information indicating a specific
tenant to which the modification content is directed. Accord-
ing to one embodiment, the information of the specific class
comprises identification information of the specific class and
metadata associated with the specific class. Modification unit
704 is configured to modify, in response to obtaining the data
packet, the specific class in the middleware in runtime accord-
ing to the modification information, and make the modifica-
tion content be applied only to the specific tenant. Preparation
unit 702 may also be configured to obtain a customization
request for the specific tenant, prepare the modification infor-
mation and tenant information according to the customization
request, and pack the modification information and tenant
information into the data packet according to a predetermined
format. According to one embodiment, the apparatus 700
further comprises a storage unit (not shown) configured to

US 9,304,742 B2

9

store the modified specific classes. The specific execution of
the apparatus 700 for moditying the middleware may refer to
the description of the method provided by FIG. 3 and in
conjunction with the above examples, and will not be
described in further detail here.

According to one embodiment, the customization request
indicates modification to a specific function part of the
middleware, and accordingly, preparation unit 702 is config-
ured to obtain a class corresponding to the functional part as
the specific class and transform the modification to the func-
tion part into the modification to the specific class. The prepa-
ration unit 702 is further configured to notify the data packet
to the runtime environment running the above middleware
and the modification unit 704 modifies the specific class
through a class transformer in runtime. The modification unit
704 may further comprise (not shown) an extraction module
configured to extract the modification information and tenant
information from the data packet, a locating module config-
ured to locate the specific class to be modified, a modification
module configured to modify the specific class according to
the modification content, and a condition addition module
configured to add an execution condition associated with the
specific tenant for the above modification content in the spe-
cific class.

In one embodiment, the modification content contains con-
tent of updated version of the specific class. Thus, the above
modification module is configured to compare content of
original version of the specific class to the content of updated
version. Based on this comparison the modification module
determines content of difference, and may modify the specific
class according to the content of difference. The modification
module may also be further configured to add at least one of
a re-defined variable, a re-defined method, a newly added
variable, and a newly added method in the content of differ-
ence of the specific class:

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some candidate implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be embodied as an apparatus,
method or computer program product. Accordingly, aspects
of the present disclosure may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding, for example, firmware, resident software, micro-
code) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” It will be understood by those
skilled in the art that the apparatus that embodies a part or all
of the present disclosure may be a general purpose device
having at least one processing unit, a memory, and a software

20

35

40

45

55

10

executing on the at least one processing unit that is further
configured to provide a part or all of an embodiment of the
disclosure. The device may be a single device or a group of
devices.

The present disclosure can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable storage medium providing program code for
use by or in connection with a computer or any instruction
execution system. For the purposes of this disclosure, a com-
puter usable or computer-readable storage medium can be
any tangible apparatus that contains, stores, communicates,
propagates, or transports the program for use by or in con-
nection with the instruction execution system, apparatus, or
device. The medium can be an electronic, magnetic, optical,
electromagnetic, or semiconductor system (or apparatus or
device). Examples of a computer-readable storage medium/
device include a semiconductor or solid state memory, mag-
netic tape, a removable computer diskette, a random access
memory (RAM), a read only memory (ROM), a rigid mag-
netic disk and an optical disk. Current examples of optical
disks include compact disk read only memory (CD-ROM),
compact disk read/write (CD-R/W), and DVD. Program code
embodied on a computer-readable storage medium may be
transmitted using any appropriate medium, including, but not
limited to wireless, wireline, optical fiber cable, RF, or any
suitable combination of the foregoing.

The program code for carrying out operations for aspects
of the present disclosure may be written in any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++
or the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user’s computer, partly on the user’s computer,
as a stand-alone software package, partly on the user’s com-
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter solution, the remote
computer may be connected to the user’s computer via any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made to
an external computer (for example, via the Internet using an
Internet Service Provider).

While the present disclosure has been described with ref-
erence to exemplary embodiments, and while the embodi-
ments have been described in considerable detail, it will be
understood by those skilled in the art that various changes
may be made and equivalents may be substituted for elements
thereof without departing from the scope of the invention.
Additional advantages and modifications will readily appear
to those skilled in the art. The description of the present
invention has been presented for purposes of illustration and
description, but is not intended to be exhaustive or limited to
the invention in the form disclosed. Many improvements,
modifications, and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the present disclosure. In addition, many modifica-
tions may be made to adapt a particular system, device or
component thereof to the teachings of the invention without
departing from the essential scope thereof. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention and the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated. There-
fore, it is intended that the invention not be limited to the
particular embodiments disclosed for carrying out this inven-

US 9,304,742 B2

11

tion, but that the invention will include all embodiments fall-
ing within the scope of the appended claims.
What is claimed is:
1. A method for modifying a middleware shared by a plu-
rality of tenants, the method comprising:
obtaining a customization request of a specific tenant of the
plurality of tenants, wherein the customization request
indicates one or more modifications to the middleware
for only the specific tenant, wherein each tenant of the
plurality of tenants all share the middleware and run one
or more respective user applications on the middleware;

preparing a data packet comprising modification informa-
tion and tenant information that identifies the specific
tenant, the modification information comprising infor-
mation of a specific class to be modified in the middle-
ware as well as modification content for the specific
class, wherein the modification content comprises one
of a content of difference that comprises modifications
to be directly applied to the specific class and an updated
version of the specific class;

storing the data packet in a predetermined position that is

readable by a runtime environment according to a prior
agreement; and
in response to detecting a load of the specific class in
runtime:
retrieving the data packet from the predetermined posi-
tion via the runtime environment; and
modifying, via the runtime environment, the specific
class in the middleware during loading for only the
specific tenant according to the modification informa-
tion to create a modified specific class without modi-
fying program code in the original version of the
specific class.
2. The method according to claim 1, wherein the informa-
tion of the specific class comprises identification information
of the specific class as well as metadata associated with the
specific class, and wherein the specific class is shared by
multiple tenants including the specific tenant.
3. The method according to claim 1, wherein the customi-
zation request indicates one or more modifications to a spe-
cific function part of the middleware for only the specific
tenant, and wherein preparing the data packet comprises:
identifying and obtaining a particular class corresponding
to the specific function part of the middleware;

transforming a modification to the specific function part of
the middleware to one or more modifications to the
specific class;

preparing the modification information and the tenant

information according to the one or more modifications
to the specific class; and

packing the modification information and tenant informa-

tion into the data packet according to a predetermined
format.

4. The method according to claim 1, wherein—preparing
the data packet further comprises reporting the data packet to
the runtime environment.

5. The method according to claim 1, wherein modifying the
specific class further comprises modifying the specific class
through a class transformer in runtime.

6. The method according to claim 1, wherein modifying the
specific class further comprises:

10

15

30

35

40

45

55

60

12

extracting the modification information and the tenant

information from the data packet;

locating the specific class;

modifying the specific class according to the modification

content;

adding an execution condition in the specific class for the

modification content that is associated with only the
specific tenant in the specific class, wherein responsive
to adding the execution condition for the specific tenant
the modified specific class becomes a proxy class,
wherein responsive to the specific tenant accessing the
specific class the tenant is guided via the execution con-
dition to a specific version of the specific class corre-
sponding to only the specific tenant; and

applying the modified content only to the specific tenant.

7. The method according to claim 6, wherein: modifying
the specific class according to the modification content fur-
ther comprises:

in response to the modification content further comprising

content of an updated version of the specific class:

comparing content of the original version of the specific
class with content of the updated version of the spe-
cific class to determine a content of difference; and

modifying the specific class according to the content of
difference.

8. The method according to claim 7, wherein modifying the
specific class according to the content of difference further
comprises adding, into the specific class, at least one item
contained in the content of difference, the at least one item
comprising one or more of:

a re-defined variable, a re-defined method, a newly added

variable, and a newly added method.

9. The method according to claim 1, further comprising
storing the modified specific class.

10. The method according to claim 1, wherein multiple
copies of the specific class having the same name exist in the
plurality of classes, wherein each copy of the specific class is
loaded by a different loader, and wherein the information of
the specific class contains metadata that comprises one or
more of: a source of the specific class to be modified, infor-
mation of a corresponding loader, and version information of
the specific class.

11. The method according to claim 1, wherein the modifi-
cation content is designated by the specific tenant, the method
further comprising:

determining whether the modification content indicates at

least one of a particular variable and a particular method
in the specific class that is not needed; and

in response to determining the modification content indi-

cates at least one of a particular variable and a particular
method in the specific class that is not needed, adding a
second execution condition in the specific class that
skips the at least one of the particular variable and the
particular method, wherein the second execution condi-
tion is associated with only the specific tenant.

12. The method according to claim 11, wherein the second
execution condition is added in response to determining that
a programming language of the middleware does not allow
for deleting original elements in the specific class.

#* #* #* #* #*

